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Enhancing Mathematical Reasoning in the
Classroom: The Effects of Cooperative
Learning and Metacognitive Training
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Bar-Ilan University

The purpose of this study was to investigate the effects of four instructional meth-
ods on students’ mathematical reasoning and metacognitive knowledge. The
participants were 384 eighth-grade students. The instructional methods were
cooperative learning combined with metacognitive training (COOP+META),
individualized learning combined with metacognitive training (IND+META),
cooperative learning without metacognitive training (COOP), and individu-
alized learning without metacognitive training (IND). Results showed that the
COOP+META group significantly outperformed the IND+META group, which
in turn significantly outperformed the COOP and IND groups on graph inter-
pretation and various aspects of mathematical explanations. Furthermore, the
metacognitive groups (COOP+META and IND+META) outperformed their
counterparts (COOP and IND) on graph construction (transfer tasks) and
metacognitive knowledge. This article presents theoretical and practical impli-
cations of the findings.
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P ]ost research on mathematical education emphasizes the importance
of mathematical reasoning as an integral part of doing mathematics
(National Council of Teachers of Mathematics [NCTMI, 1989, 2000; Cai, Lane,
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& Jakabcsin, 1996). According to the NCTM standards, mathematical reason-
ing requires the attainment of abilities to construct mathematical conjectures,
develop and evaluate mathematical arguments, and select and use various types
of representations. To help students meet the standards, the NCTM empha-
sizes the importance of mathematical discourse in the classroom. Students
not only should discuss their reasoning on a regular basis with the teacher and
with one another but also should explain the basis for their mathematical
reasoning, both in writing and in their mathematical discourse.

Research on the NCTM standards has moved beyond identifying their
elements to focusing on the treatments, or conditions, under which they can
be optimally enhanced in the classroom. In the literature two methods have
been suggested: One focuses on cooperative learning (e.g., Slavin, 1996), the
other on metacognitive training (e.g., Schoenfeld, 1985). The following para-
graphs briefly describe the effects of each method on mathematical reasoning.

Cooperative Learning and Mathematical Reasoning

Research in cognitive psychology has shown that learning occurs when the
learner is engaged in some sort of cognitive restructuring or elaboration
(Wittrock, 1986). One of the most effective means of elaboration is explain-
ing the material to someone else. Slavin proposes that “(a) through mutual
feedback and debate, peers motivate one another to abandon misconceptions
and search for better solutions; (b) the experience of peer interaction can help
a child master social processes, such as participation and argumentation,
and cognitive processes, such as verification and criticism; (¢) collaboration
between peers can provide a forum for discovery learning and can encour-
age creative thinking; and (d) peer interaction can introduce children to the
process of generating ideas” (1996, pp. 49-50).

On the basis of this research, several cooperative learning programs
have been designed to replace the traditional teaching of mathematics. The
following are examples of programs for teaching mathematics in cooperative
settings: the Interactive Mathematics Program, a 4-year program for learning
algebra through precalculus (Fendel et al., 1996); the Core-Plus Mathematics
Project (Hirsch et al., 1997) for high school students; Connect Mathematics
for Grades 6-8 (Lappan et al., 1996); IMPROVE for Grades 7-9 (Mevarech
& Kramarski, 1997a); and Number Power for Grades K—6 (Robertson et al.,
1996). For an excellent review of cooperative programs for the teaching of
mathematics, see Davidson, 1990.

The use of small groups, however, requires fundamental changes not
only in the organization of the classroom but also in ways of learning. From
a cognitive perspective, students who have poor communication skills are
less likely to benefit from cooperative learning because they are not able to
communicate their mathematical reasoning to others, nor do they know how
to ask questions, reflect on their solution process to explain it to their peers,
or offer constructive criticism (Webb, 1989, 1991; Webb & Farivar, 1994).

Cohen (1996), Webb and Farivar (1994), Meloth and Deering (1994),
and Mevarech and Kramarski (1997a) suggest that developing mathematical
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reasoning in small-group activities must be structured to maximize the oppor-
tunities for each student to be engaged in questioning, elaboration, explana-
tion, and other verbal communication through which students can express their
ideas and group members can give and receive feedback. Researchers (Cohen;
Cobb, Boufi, McClain, & Whitenack, 1997) have indicated that features of dis-
course are new behaviors that students can learn through practice and re-
inforcement. Using arguments for mathematical reasoning, for example, can
become a norm for behavior that enhances mathematical reasoning. Partici-
pation in reflective discourse in which mathematical activity is objectified can
be an explicit topic of conversation. Thus, students need to be exposed to
explicit metacognitive training that focuses on skills for high-level discourse.

Metacognitive Training and Mathematical Reasoning

Several studies (e.g., Mevarech & Kramarski, 1997a; Schoenfeld, 1985; Lester,
Garofalo, & Kroll, 1989) have examined the effects of metacognitive training
on mathematics reasoning. In all of these studies, the metacognitive training
was based on Polya’s (1945) approach for solving mathematical problems. A
major common element of these programs is training students who work in
small groups to formulate and answer a series of self-addressed metacogni-
tive questions that focus on (a) the nature of the problem or task, (b) the con-
struction of relationships between previous and new knowledge, and (¢) the
use of strategies appropriate for solving the problem or task.

Mevarech and Kramarski (1997a) examined the effects of metacogni-
tive training embedded in small groups. The program is called IMPROVE, the
acronym of all the teaching stages: Introducing the new concepts, Metacog-
nitive questioning, Practicing, Reviewing and reducing difficulties, Obtaining
mastery, Verification, and Enrichment. Mevarech and Kramarski reported that
IMPROVE students who studied in heterogeneous classrooms without track-
ing or grouping outperformed their counterparts in nontreatment control
groups who studied in small groups. In particular, observation showed that
IMPROVE had positive effects on students’ mathematical achievement and
ability to explain their reasoning. These findings are in line with those of
King (1989, 1991, 1994), who showed that students in various age groups
(e.g., fourth-graders, sixth-graders, and college students) who were trained to
formulate and answer metacognitive questions similar to the ones described
earlier outperformed their counterparts in control groups on various measures
of achievement and problem solving outside the area of mathematics.

Although these findings are promising, they all focus on combined coop-
erative learning and metacognitive training. Thus there remains the interest-
ing question, What is the unique contribution by each component to students’
mathematical reasoning? For example, one may convincingly argue that stu-
dents exposed to metacognitive training in individualized settings perform
similarly to or even better than students exposed to metacognitive training
in cooperative learning settings because the former are trained to analyze the
problem or task, to construct connections between new and previous knowl-
edge, and to use strategies that are appropriate for solving the problems or
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completing the tasks. According to this view, metacognitive training is an
effective method for enhancing mathematical reasoning regardless of class-
room organization. By comparing the mathematical reasoning of students
who learned in cooperative settings (with or without metacognitive training)
and that of students who learned in individualized settings (with or without
metacognitive training), better evidence can be provided regarding the con-
ditions appropriate for attaining standards in mathematics (NCTM, 1989, 2000).
To our knowledge, no previous study has addressed this issue.

It is particularly important to examine the differential effects of the four
instructional methods on the completion of transfer tasks. Many studies have
indicated that students’ ability to transfer their knowledge to new situations
is quite limited (e.g., Salomon & Perkins, 1987). One of the factors that con-
tribute to that limitation is students’ inability to identify the essential elements
that are similar or different in the already-completed and targeted tasks. Cecil
and Roazzi (1994) reported that training students to describe the similarities
and differences between problems facilitated their ability to succeed at transfer
tasks. On the basis of that study, we hypothesized that regardless of classroom
organization, students who are trained to formulate and answer metacognitive
questions such as those described earlier will be better able to transfer their
knowledge to new situations than students who are not exposed to such meta-
cognitive training.

Finally, there is a need to investigate the metacognitive knowledge that
students acquire under the various conditions. Since the late 1970s, when
Flavell (1979) first coined the term metacognition, much research has focused
on the nature of metacognition (e.g., Schoenfeld, 1987), how it develops as a
function of students’ age (e.g., Schneider & Sodian, 1990), and how it can be
used in the classroom (e.g., Garofalo & Lester, 1985). In particular, research
has focused on various kinds of metacognition, including metamemory,
metalanguage, metasolving, and metareading (Forrest-Pressley, Makinnon,
& Gary Waller, 1985). These studies led us to suggest a distinction between
general and domain-specific metacognitive knowledge, similar to the distinc-
tion made between cognitive processes (Salomon & Perkins, 1987). General
metacognitive knowledge is knowing about and being able to control and reg-
ulate problem-solving processes regardless of the specific domain from which
problems or tasks are drawn. Domain-specific metacognitive knowledge focuses
on the unique features of each domain and therefore varies among domains.
Schoenfeld indicated that in mathematics, metacognitive knowledge includes
knowledge about one’s own thought processes (e.g., accuracy in describing
your own thinking), control or self-regulation (e.g., keeping track of what
you are doing when solving problems or tasks), and beliefs and intuitions
(e.g., ideas about mathematics that you bring to your work in mathematics).
There is reason to suppose that different instructional methods may have dif-
ferent effects on students’ general and specific metacognitive knowledge.
Students who are exposed to metacognitive training are expected to be bet-
ter at reflecting on solution processes (general and specific) than students
who are not exposed to such training. Discussing metacognitive issues with
others is expected to enhance metacognitive knowledge.
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The present study addressed these issues. We compared students’ math-
ematical reasoning, transfer ability, and metacognitive knowledge under
four instructional methods: cooperative learning combined with metacog-
nitive training (COOP+META), cooperative learning without metacognitive
training (COOP), individualized learning combined with metacognitive train-
ing AIND+META), and individualized learning without metacognitive train-
ing (IND).

Method
Participants

The participants were 384 students (181 boys and 203 girls) who studied in
12 eighth-grade classrooms randomly selected from 4 junior high schools.
The 4 schools were randomly selected from a pool of 15 schools located in
one district, where mathematics was taught in heterogeneous classrooms with-
out groupings or ability tracking. The schools were similar in size, average
socioeconomic status as defined by the Israel Ministry of Education, students’
mean age, and levels of mathematics achievement assessed before the begin-
ning of the study. Within schools, classes were normally distributed in terms of
students’ ability and prior knowledge. The average students’ age was 13.3 years.

Twelve teachers participated in the study, each teaching in one classroom.
All teachers were female and had more than 5 years of experience in teaching
mathematics, and all had taught in heterogeneous classrooms. All teachers had
a degree in mathematics education. The teachers were exposed to a 2-day inser-
vice training program (to be described later).

Conditions

All classes studied a linear graph unit. That unit was selected for three reasons:
First, it introduced various kinds of mathematics representations. Second, com-
prehending graphs was one of the mathematical skills that were emphasized
by the NCTM standards (1989, 2000). Finally, comprehending graphs is a
central skill in the study of sciences and mathematics.

The main purpose of the unit was to develop students’ understanding
of linear graphs. In particular, all of the students studied (a) the concepts of
slope, intersection point, and rate of change; (b) quantitative and qualitative
methods of graph interpretation; and (¢) transformation of algebraic expres-
sions of the form y = mx + b into graphic representations.

In all classrooms mathematics was taught five times a week, in accor-
dance with the mathematics curriculum suggested by the Israel Ministry of
Education. The linear graph unit was taught for 2 weeks. At the beginning of
the unit the teacher introduced strategies of graph interpretation such as using
tables, algebraic formulas, steps, and verbal explanations. All students in all con-
ditions practiced those strategies with the same problems or tasks, and all used
the same textbook. In addition, the teachers used the same problems or tasks
when they introduced new concepts. In addition to the textbook, students
under each condition used learning materials that covered the same kinds of
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exercises as those presented in the textbook but that emphasized the unique
components of each condition. An example of an open-ended task and how
it related to the instruction is provided in Appendix A.

The differences among the groups were in the instructional method.
Because each condition was defined by the presence or absence of two
components—metacognitive training and cooperative learning—we first
describe the components separately and then describe how they were
combined.

Metacognitive Training

The metacognitive training used in the present study was based on the tech-
niques suggested by Schoenfeld (1985) and Mevarech and Kramarski (1997a).
The metacognitive training used three sets of self-addressed metacognitive
questions: comprebension questions, strategic questions, and connection ques-
tions. The comprehension questions were designed to prompt students to
reflect on a problem before solving it. In addressing a comprehension ques-
tion, students had to read the problem, describe the relevant concepts in their
own words, and try to understand what the concepts meant. In graph inter-
pretation, the comprehension questions guided students to interpret prob-
lems on both the local-to-global dimension and the quantitative-to-qualitative
dimension (Leinhardt, Zaslavsky, & Stein, 1990). The comprehension ques-
tions included the following: What does the x-axis represent? What does the
Jraxis represent? What is the trend of the graph? What are the specific points
on the graph? To assist students in remembering the comprehension ques-
tions, students used the acronym DATA: Describe the x-axis and the y-axis;
Address the units and the ranges of each axis; 7ell the 7Trend(s) of the graph
or parts of the graph; and Analyze specific points.

The strategic questions were designed to prompt students to consider
which strategies were appropriate for solving or completing a given problem
or task and for what reasons. In addressing the strategic questions, students
had to describe the “what” (e.g., What strategy, tactic, or principle can be used
to solve the problem or complete the task?), the “why” (e.g., Why is this strat-
egy, tactic, or principle most appropriate for this problem or task?); and the
“how” (e.g., How can the suggested plan be carried out?). Possible strategies
for interpreting graphs were adding steps to a graph to calculate the slope,
using data tables, and referring to the algebraic representation of the graph.

The connection questions were designed to prompt students to focus on
similarities and differences between the immediate problem or task and prob-
lems or tasks that they had already completed successfully. Connection ques-
tions regarding graphs guided students to find similarities and differences
between the graph at hand and graphs they had already interpreted, or to
compare different intervals on the same graph.

The metacognitive questions were printed in the students’ working sheets
and in the teacher guide. Students used the metacognitive questions in their
small groups or individualized activities and in writing when they used their
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booklets. In addition, the teachers modeled the use of the metacognitive ques-
tioning when they introduced new concepts to the whole class, reviewed the
materials, and helped students in their small groups or individualized activi-
ties. Students were told that asking and answering the metacognitive questions
would help them to understand and remember the material presented in math-
ematics classes.

Cooperative and Individualized Learning

Generally speaking, both cooperative and individualized learning sessions
included three parts: teacher introduction to the whole class (about 10 minutes),
cooperative or individualized seatwork (about 30 minutes), and teacher review
with the whole class (about 5 minutes).

Each session started with a teacher’s short presentation of the new
materials to the whole class using the question-answering technique described
by Marx and Walsh (1988). The teacher began by providing answers to two
questions: What am I supposed to do in this task? (What’s in the problem or
task?) and, What do I already know about it? (What are the differences and
similarities between . . . and ... ?). Next, the teacher modeled strategies for
completing the task and explained why the strategies were likely to succeed.
Last, the teacher explained how to check the answer and what to do if the
plan did not work.

After the introduction, students began work in small groups or individ-
ually, using the materials designed by us. The cooperative technique followed
the method suggested by Brown and Palincsar (1989): Students learned in
heterogeneous teams of four, each team including one high-achieving student,
two middle-achieving students, and one low-achieving student. To ensure
team heterogeneity, all students were tested on mathematics achievement
before the beginning of the study and teams were constructed on the basis
of students’ performance on that test. The learning in teams was implemented
as follows: Each student, in turn, read a problem or task aloud and tried to
complete it. Whenever there was no consensus, the team discussed the issue
until the disagreements were resolved. In talking about the problem or task,
explaining it to each other, approaching it from different perspectives, bal-
ancing the perspectives against each other, and proceeding according to
what seemed to be the best option at the time, students used the diversity in
their prior knowledge to self-regulate their learning. When all team members
agreed on a solution, they wrote it down on their answer sheets. When none
of the team members knew how to complete a problem or task, they asked
for teacher assistance. At the end of the period the teacher reviewed the main
ideas of the lesson with the entire class. When common difficulties came to
light, the teacher provided additional explanations to the whole class.

Components Combined to Form the Four Conditions

The metacognitive training and the cooperative or individualized compo-
nents were combined as follows.
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COOP+META Condition

The COOP+META condition resembled the IMPROVE procedure (Mevarech
& Kramarski, 1997a). Students in that condition studied in small heterogeneous
groups using the metacognitive questions described earlier: comprehension
questions, strategic questions, and connection questions. The metacognitive
questions were used by students individually when their turn arrived to solve
a problem or complete a task aloud, by the group as a whole in mathematical
discourse, and by the teacher when introducing the new concepts to the whole
class, reviewing the lesson at the end of the class, and providing help in the
small groups.

IND+META Condition

Under the IND+META condition, the metacognitive training was exactly the
same as in the COOP+META condition, except that it was implemented in indi-
vidualized rather than cooperative settings. As in the COOP+META condition,
each period in the IND+META condition started with a 10-minute teacher
introduction for the whole class. The teacher introduced the new concepts
using the metacognitive question-answering technique and modeling the use
of the questions. The students then began to work individually on problems
or tasks by using the same metacognitive questions described earlier, and
the metacognitive questions were printed in the students’ booklets. Students
had to answer the questions in writing. Finally, at the end of the period, the
teacher reviewed the new concepts by using the question-answering tech-
nique and modeling the use of the metacognitive questions. When students
worked on the problems individually, the teacher provided help to individ-
ual students as needed. When helping students, the teacher also modeled
the use of the metacognitive questions.

COOP Condition

Under the COOP condition, students studied in small heterogeneous groups
as in the COOP+META condition, but they were not exposed to metacognitive
training. Each session started with a short presentation of the new materials to
the whole class using the question-answering technique. The students then
started work on the problems or tasks. The teachers encouraged students to
discuss mathematical ideas in their small groups and to provide explanations
to one another, but no explicit metacognitive guidance was provided. Each
student, in turn, read a problem or task aloud and tried to solve or complete
it. When students failed to solve a problem or did not agree on the solu-
tion, the team discussed the components of the problem until consensus
was achieved. When all team members agreed on a solution, they recorded
it in their notebooks. When no team members knew how to solve a prob-
lem, the team asked for teacher assistance. At the end of the lesson, the
teacher reviewed the main ideas of the lesson with the entire class. When
common difficulties were observed, the teacher provided additional expla-
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nations to the whole class. In each period the teacher worked with two to
three groups.

IND Condition

Under the IND condition, students learned individually and without metacog-
nitive training. Each class started with a 10-minute teacher introduction of the
new concepts to the whole class. Students then worked on the problems or
tasks individually without using the metacognitive questions. While the stu-
dents worked, the teacher provided help to those who needed it. At the end
of the class, the teacher reviewed the new concepts with the whole class. That
group served as a control group.

Learning Materials and Teacher Training

We designed two sets of learning materials for the purposes of the pres-
ent study. One set included the metacognitive questions and the other
did not. Instead of metacognitive questions, the learning materials of the
non-metacognitive groups (COOP and IND) included general instruction
(e.g., Explain your answer in writing; or, Discuss your mathematical ideas
with your classmates). Otherwise, the two sets of learning materials were
identical.

Before the beginning of the study, all 12 teachers were exposed to a
2-day inservice training, which focused on pedagogical issues related to the
teaching of the linear graph unit. Teachers were told that they were partici-
pating in an experiment in which new learning materials would be tried out.

Teachers in each learning condition were exposed separately to the the-
oretical background of their learning method and its practical implications.
The teaching guides included explicit lesson plans, learning materials, and
use of examples. One set of learning materials included the metacognitive
questions; the other, general instructions (e.g., Discuss your mathematical
ideas with your classmates; or, Explain your answers). The mathematical
problems that were used as examples were identical in all conditions. The
teachers who were assigned to the metacognitive groups (COOP+META and
IND+META) were introduced to the rationale and techniques of the metacog-
nitive method. The COOP and the COOP+META teachers were introduced
to the rationale of cooperative learning and how to implement it. The IND
and IND+META teachers were introduced to the rationale of individualized
learning and how to implement it. Otherwise, the training of all teachers was
identical.

Measurements

We used three measures to assess students’ mathematical reasoning and
metacognitive knowledge: a graph interpretation test, a graph construction test,
and a metacognitive questionnaire.
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Graph Interpretation Test

A 36-item test, adapted from the studies of Mevarech and Kramarski (1992,
1993), assessed students’ ability to interpret graphs, particularly linear graphs.
The test included items that required qualitative and quantitative graph inter-
pretation skills. According to Leinhardt et al. (1990), qualitative interpreta-
tion of a graph requires “looking at the entire graph (or part of it) and gaining
meaning about the relationship between the two variables and, in particular,
their pattern of covariation” (p. 11). Quantitative interpretation is often asso-
ciated with local and specific features, based on point identification and a
lower level of graph processing (Wainer, 1992).

The test contained two kinds of items, presented in a mixed order. Twenty-
seven were based on traditional evaluation procedures; they included multiple-
choice and short, open-ended items regarding basic knowledge about the
Cartesian system and linear-graph interpretation (e.g., In which months
were the temperatures equal?). Nine items did not require (or invite) local
interpretations or computations but rather were designed specifically to
assess students’ mathematical reasoning. These were open-ended items that
asked students to give a final answer and explain their reasoning in writing.
They required students to (a) draw conclusions and make algebraic general-
izations on the basis of a given graph; (b) evaluate graphs representing the
same story and decide which graph better represented the story; (¢) resolve
mathematical conflicts regarding linear graphs; (d) identify misconceptions
regarding linear graphs (see, for example, Leinhardt et al., 1990; Mevarech &
Kramarski, 1997b); (e) analyze graphs and decide whether certain mathe-
matical expressions always, never, or sometimes represented the given graphs
and vice versa; and (f) analyze the structure of graphs. An example of an open-
ended task is presented later.

Students received a score of either 1 (correct answer) or zero (incorrect
answer) for each item and a total score ranging from zero to 36. The Kuder
Richardson reliability coefficient was .91. In addition, we analyzed the math-
ematical explanations that students provided in response to the nine open-
ended items, as described in the next section.

Mathematical explanations could be correct or incorrect and could be
expressed in formal or informal mathematical language. We considered an
explanation to be correct if the argument fit the conventions, even if it was
not expressed in a formal mathematical language.

Students could use one or more arguments to explain their reasoning.
We analyzed their explanations by focusing on two dimensions: fluency and
flexibility (California Learning Assessment System, 1993).

Fluency refers to the number of correct arguments provided by students.
In addition, students also provided incorrect arguments. No significant dif-
ferences were found between groups on the number of incorrect arguments
before the beginning and at the end of the study, F(3, 372) <1, p> .05; there-
fore, we will not report further on fluency of incorrect arguments. Hereinafter,
fluency refers only to the total number of correct arguments. Flexibility refers

290



Enbancing Mathematical Reasoning in the Classroom

to a student’s providing more than one kind of correct argument to justify his
or her reasoning.

We classified the arguments into four categories: logical-formal, numerical-
computational, visual, and drawing. Definitions and examples are provided
below. All examples refer to the following task, in which students were directed
to examine the graph shown in Figure 1:

The graph below represents the income of two companies between
the years 1990 and 2000. Until the year 1994, was the change rate in
the income of Company B greater than, smaller than, or equal to the
change rate in the income of Company A? After 1994, did the change
rates in the companies’ incomes become different? Please explain
your reasoning.

Student responses were classified as logical-formal (based on logical-
mathematical arguments), numerical-computational (based on numerical
computations or algebraic formulas), visual (based on intuitive, visual analy-
sis of the graph), or drawing (based on drawings that students added to the
graph). Here are examples of correct and incorrect responses of each type:

Logical-formal

Correct: “The change rate of line A is greater because its slope
is steeper than that of line B”; “The change rate of line A is
greater because the angle it creates with the x-axis is bigger than
the angle that line B creates with the x-axis.”

Income (thousands)

A

12

10

0 T T T T T
0 2 4 6 8 10 12 Years

Figure 1. The graph represents the income of two companies between
the years 1990 and 2000.
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Incorrect: “The change rate of line A is smaller because it starts
from the origin (0, 0).”

Numerical-computational

Correct: “The change rate of line A is 3 times greater than the
change rate of line B.”

Incorrect: “The change rate of line A is 5 times greater than the
change rate of line B.”

Visual
Correct: “Line A is steeper, line A is more diagonal.”
Incorrect: “At M the line breaks”; “Line A is above line B.”
Drawing

Correct: Adding one-unit steps to the graph and calculating the
change rate by using the steps.

Incorrect: Adding lines that do not assist in finding the change rate.

Because students could use more than one kind of argument in explain-
ing their reasoning, one explanation could be classified in several categories.
Figure 2 presents a diagram of the categories used in the present study to clas-
sify students’ mathematical explanations.

Two judges who were experts in mathematics education analyzed the
students’ explanations. The interjudge reliability coefficient was .88.

Graph Construction Test (Transfer Tasks)

The graph construction test, adapted from the study by Mevarech and Kra-
marski (1997b), assessed students’ ability to construct graphs. That test was
regarded as assessing transfer knowledge because in none of the classrooms
did the students study graph construction. According to Leinhardt et al., “con-
struction is quite different from interpretation. Whereas interpretation relies
on and requires reaction to a given piece of data (e.g., a graph, an equation,
or a data set) construction requires generating new parts that are not given”
(1990, p. 12). Graph construction requires interpretation skills and involves
more difficulties than does graph interpretation (Mevarech & Kramarski).

The graph construction test contained 7 items, each presenting a verbal
description of a situation. The situations represented increasing, decreasing,
constant, and curvilinear functions. Students were asked to transform the ver-
bal descriptions into graphic representations. They could choose any kind of
representation and were allowed to construct the graphs freehand, without
using a ruler. Appendix B provides several examples.

For each item, students received a score of either 1 (correct answer) or
zero (incorrect answer), and a total score ranging from zero to 7. A graph was
considered correct if it followed the conventions of the Cartesian system and
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Explanations
of mathematical reasoning

Kinds of arguments:
Logic-Formal Numerical-Computational Visual Drawing

Flexibility:
More than one
kind of correct
argument

Fluency:
Number of
arguments

Number of Number of
Correct Incorrect
arguments arguments

Figure 2. Categories of mathematical explanations.

represented correctly the situation described, regardless of the kind of graph
used (e.g., histogram, bar graph, or line graph). Two judges who are experts
in mathematics education scored students’ responses. The interjudge reliabil-
ity coefficient was .92.

Metacognitive Questionnaire

The metacognitive questionnaire, adapted from a study by Montague and
Bos (1990), assessed students’ general and specific metacognitive knowledge
regarding graph comprehension. The questionnaire included 20 items: 7 items
referred to general strategies (e.g., “When I solve a math problem I read the
problem several times before attempting a solution”); 4 items referred to strate-
gies for transformation from one kind of representation to another (e.g., “When
I see a graph, I try to find out the algebraic expression it presents”); and 9 items
referred to specific quantitative and qualitative graph interpretation strategies
(e.g., “When I see a graph, I first look at specific points” [quantitative inter-
pretation]; “When I see a graph, I first try to find out the general trend of the
graph” [qualitative interpretation].

Each item was constructed on a 5-point Likert-type scale, ranging from
1 (never) to 5 (always). Thus students received scores on each item, ranging

293



Kramarski and Mevarech

from 1 to 5, and a total score from 20 to 100. The alpha Cronbach coefficient
was .80.

Procedure

As indicated, 12 classrooms from four schools participated in the study. Schools
were randomly assigned to conditions, and in each school 3 classrooms (out
of 6 parallel eighth-grade classrooms) were randomly selected to participate in
the present study. We did not assign classrooms to different conditions within
one school because our experience shows that teachers in the same school
tend to share materials and talk to each other about their teaching activities.

About a month after the beginning of the school year, all students were
administered the examinations described earlier: Graph Interpretation Test,
Graph Construction Test, and Metacognitive Questionnaire. Then, each teacher
began teaching the unit according to the instructional method to which she
was assigned, using the materials specially designed for that condition. To
ensure that the instruction was properly implemented as designed, all class-
rooms were observed twice a week by one of the authors of this article. At the
end of the study, the same battery of tests was readministered.

Results
Mathematical Reasoning

The first purpose of the present study was to investigate the differential effects
of COOP+META, IND+META, COOP, and IND on students’ mathematical rea-
soning. Because a significant correlation was found between graph interpre-
tation and graph construction scores (7= .48), a MANCOVA (Wilks’s lambda
test) was carried out on the posttreatment scores of those two variables simul-
taneously with classrooms nested in conditions and controlling for pretreat-
ment on graph interpretation and graph construction. Before carrying out the
MANCOVA, we checked the prerequisites for running it, MS, = 2.3, F(6, 743)
<1, p>.05.

The results indicated significant differences between conditions on the
posttest scores of graph interpretation and graph construction simultane-
ously, MS. =10.7, F(6, 744) = 6.17, p < .001.

Graph Interpretation

Given the MANCOVA findings, we carried out a one-way analysis of vari-
ance (ANOVA) on the pretest scores and a one-way analysis of covariance
(ANCOVA) on the posttest scores with classrooms nested in conditions and
with the corresponding pretest scores used as a covariant.

Table 1 presents the mean scores, adjusted mean scores, and standard
deviations on graph interpretation by time and condition. The ANOVA with
classrooms nested in conditions indicated no significant differences between
conditions before the beginning of the study, MS. = 38.4, F(3, 372) = .71,
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Table 1
Scores on Graph Interpretation Test (by Time and Condition)

COOP+META IND+META COOP IND
n=105 n=95 n=91  n=93 F
Pretest M 15.5 14.4 14.2 16.0 <1
SD 6.4 6.4 5.9 6.2
Posttest M 24 .4 20.9 19.2 19.8 3.98**
Adjusted M 24.0 21.4 19.8 19.1
SD 7.2 6.9 6.4 6.6

Note. Scores ranged from zero to 306.
p<.01.

p > .05. Significant differences between treatment groups, however, were
found at the end of the study after controlling for pretreatment differences,
MS. = 44.6, F(3, 371) = 3.98, p < .05.

Post hoc analyses of the adjusted mean scores based on the pairwise com-
parison ¢ test technique indicated that the COOP+META group significantly
outperformed the IND+META group, which in turn significantly outperformed
the COOP and IND groups. No significant differences were found between the
two groups that had not been exposed to the metacognitive training.

Students’ Mathematical Explanations

In addition to analyzing the total scores on graph interpretation, we also ana-
lyzed students’ explanations of their mathematical reasoning. As was indi-
cated earlier, two dimensions of mathematical explanations were investigated:
fluency (number of correct arguments) and flexibility (provision of more than
one kind of correct argument).

Fluency

Table 2 presents the mean scores, adjusted mean scores, and standard devi-
ations of students’ fluency in providing correct arguments by time and con-
dition. Although no significant differences were found between groups before
the beginning of the study, MS. =5.25, F(3, 372) = 1.38, p> .05, significant dif-
ferences were found at the end of the study with classrooms nested in condi-
tions and with the corresponding pretest scores used as a covariant, MS,=11.95,
F(3,371) =753, p<.0L.

Post hoc analyses of the adjusted mean scores based on the pairwise com-
parison ¢ test technique indicated that the COOP+META group outperformed
the IND+META group, which, in turn, significantly outperformed the COOP
and IND groups. However, no significant differences were found on that
measure between the two groups that had not been exposed to metacog-
nitive training.
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Table 2
Scores for Fluency in Providing
Correct Arguments (by Time and Condition)

COOP+META IND+META COoOoprP IND
n=105 n=95 n=91 n=93 F

Pretest
M 3.2 2.8 2.7 3.7 1.38
SD 2.4 2.2 2.1 2.6
Posttest
M 8.9 6.5 4.9 4.6 7.53*
Adjusted M 8.9 6.7 5.2 4.2
SD 5.0 4.4 3.2 2.9

Note. Fluency was scored by the number of correct arguments provided by a student. Scores
ranged from zero to 21 for COOP+META, from zero to 18 for IND+META, from zero to 15 for

COOP, and from zero to 13 for IND.
*p < .05.

Table 3 presents the number of students in each condition (percentages
are in parentheses) who used each type of correct argument, by time and
treatment. As can be seen from the table, under all conditions most students
(60%) relied on numerical-computational arguments in justifying their rea-
soning. It is interesting to note that in the individualized groups (with or
without metacognitive training), even more students (64%) did so than in the

Table 3
Frequency of Four Types of
Correct Arguments (by Time and Condition)

COOP+META IND+META CcOoor IND
n=105 n=95 n=91 n=93

Logical-formal

Pretest 19 (18.1D 16 (16.8) 6(6.6) 18 (19.4)

Posttest 31 (29.5) 14 (15.3) 13 (14.3) 19 (20.4)
Numerical-computational

Pretest 50 (47.6) 46 (48.4) 47 (51.6) 40 (43.0)

Posttest 54 (51.4) 61 (64.2) 55 (60.4) 60 (64.5)
Visual

Pretest 6.7 3(3.2) 4 (4.9 5G.4)

Posttest 7 (6.6) 7 (7.4 5(5.5) 0
Drawing

Pretest 0 0 0 1(1.D

Posttest 6.7 5(5.3) 0 0

Note. Percentages (the figures in parentheses) for each answer category were calculated by
dividing the number of students who gave answers in that category by the total number of

students in the same condition.
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cooperative groups, where 51% with metacognitive training used such argu-
ments and 60% without such training did so. In addition to using numerical-
computational arguments, students quite often used logical-formal arguments.
The frequency of using logical-formal arguments, however, was significantly
larger under the COOP+META condition (29.5%) than under all other condi-
tions (15.3%, 14.3%, and 20.4% for the IND+META, COOP, and IND condi-
tions, respectively). These differences were statistically significant ()} = 27.0,
P <.001). Further analyses showed that under all conditions, students used
the visual and drawing arguments quite infrequently (fewer than 8% of the
students under each condition).

Flexibility

As indicated earlier, the term flexibility refers to a student’s provision of more
than one kind of correct argument to justify his or her reasoning. For exam-
ple, referring to the task described earlier, a student responded as follows: “The
rate of change of Company A is greater because its rate of change is 1 and that
of Company B is 1/3. We can also see it by looking at the slopes. The slope
of line A is steeper than the slope of line B.”

Initial analysis of students’ arguments indicated that students very rarely
provided more than two kinds of argument to explain their ideas regarding
the solution of a given task. Under each condition this kind of response
occurred two or three times. Therefore, in further analysis we distinguished
between students who provided one kind of correct argument and those who
provided more than one kind of correct argument to justify their reasoning
on each task. Table 4 presents that information. Although before the study
there had been no significant differences (y* = 9.3, p > .05) between condi-
tions on flexibility, at the end of the study the chi-square analyses showed
significant differences on all tasks but two. According to Table 4, on average
about 27%, 12%, 6%, and 4% of the students under the COOP+META,
IND+META, COOP, and IND conditions, respectively, justified their mathe-
matical ideas by basing their explanations on more than one kind of correct
argument. Significant differences between conditions were also found among
the students who provided one kind of correct argument to explain their rea-
soning, but the differences were not as large as those among students who
provided more than one kind of argument to explain their reasoning. Accord-
ing to Table 4, on average about a quarter of the students under COOP+META
(28%) and IND+META (26%) provided one kind of correct argument, as com-
pared with 21% and 22% of the students under the COOP and IND condi-
tions, respectively.

Graph Construction (Transfer Task)

The second purpose of the present study was to investigate the differential
effects of COOP+META, IND+META, COOP, and IND on students’ ability in
graph construction, to which they were not exposed in the classroom. Table 5
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Table 5
Scores on Graph Construction Test (by Time and Condition)

COOP+META IND+META COOP IND
n=105 n=95 n=91 n=93 F
Pretest M 3.4 3.3 3.5 3.5 <1
SD 2.3 2.5 2.1 2.4
Posttest M 5.3 5.0 4.5 4.6 7.19*
Adjusted M 5.4 5.1 4.4 45
SD 2.3 2.2 2.0 2.1

Note: Scores on the graph construction test ranged from zero to 7. This was a transfer task.
N -
p < .05.

presents the mean scores, adjusted mean scores, and standard deviations on
graph construction by time and condition. An ANOVA of classrooms nested
within conditions indicated no significant differences between conditions
before the beginning of the study, MS. = 5.22, F(3, 372) = .2, p > .05, but at
the end of the study, significant differences were found between conditions
controlling for pretreatment differences, MS. = 2.95, F(3,371)=7.19, p<.01.

Post hoc analyses of the adjusted mean scores based on the pairwise com-
parison ¢ test technique indicated significant differences between the meta-
cognitive groups (COOP+META and IND+META) and the non-metacognitive
groups (COOP and IND), but no significant differences were found between
the two metacognitive groups or between the two non-metacognitive groups.

Metacognitive Knowledge

The third purpose of the present study was to investigate the differential
effects of COOP+META, IND+META, COOP, and IND on students’ metacog-
nitive knowledge. A one-way MANCOVA (Wilks’s lambda test) on the two
criteria (general strategy and specific strategy), which were used as depen-
dent variables with classrooms nested in conditions and with the pretest
scores used as a covariant, indicated significant differences between condi-
tions on both general and domain-specific metacognitive criteria simultane-
ously, MS. = .29, F(6, 744) = 2.97, p < .01. Before carrying out the MANCOVA,
we checked the prerequisites for running it, MS, = 2.8, F(6, 743) < 1, p> .05.

Table 6 presents the mean scores, adjusted mean scores, and standard
deviations by time and condition on general and domain-specific metacog-
nitive knowledge. As one may see from Table 6, no significant differences
were found between conditions on any aspect of the metacognitive mea-
sure before the beginning of the study (Fvalues ranged from .65 to 0.94, all
pvalues >.05). Yet at the end of the study, significant differences were found
between conditions on domain-specific metacognitive knowledge with class-
rooms nested in conditions, MS, = 0.64, F(3, 371) = 7.75, p < .01, controlling
for pretreatment differences, but not on general metacognition, F(3, 371)
<1, p>.05.
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Table 6
Scores on Metacognitive Knowledge of General and Domain-Specific
Strategies (by Time and Condition)

COOP+META IND+META CcOoopP IND

n=105 n=95 n=91 n=93 r
General strategies
Pretest <1
M 3.0 3.0 2.9 3.0
SD 6 6 6 6
Posttest <1
M 3.1 3.1 3.0 3.0
Adjusted M 3.1 3.1 92 3.0
SD .6 5 5 5
Domain-specific strategies
Pretest <1
M 3.2 3.3 3.3 3.3
SD 0 6 0 6
Posttest 7.75*
M 3.5 3.5 3.3 3.3
Adjusted M 3.5 3.5 .23 33
SD 6 5 6 5

Note: Scores ranged from 1 to 5.
*p <.05.

Post hoc analyses of the adjusted mean scores based on the pairwise com-
parison ¢ test technique indicated significant differences between the meta-
cognitive groups (COOP+META and IND+META) and the non-metacognitive
groups (COOP and IND), but no significant differences were found between
the two metacognitive groups or between the two non-metacognitive groups.

In sum, students who were exposed to the metacognitive training in either
cooperative or individualized settings significantly outperformed the other
students on graph interpretation (total scores), fluency and flexibility of cor-
rect explanations, use of logical-formal arguments to justify their reasoning,
and transfer tasks (graph construction). In addition, the metacognitive groups
attained higher levels of domain-specific metacognitive knowledge than the
non-metacognitive groups. Table 7 summarizes these findings.

Discussion

The present study compared the effects of the four instructional methods
(COOP+META, IND+META, COOP, and IND) on mathematical reasoning,
transfer of knowledge, and metacognitive knowledge. Although all four
methods focused on promoting mathematical comprehension, each method
was based on a different theoretical and operational approach. Therefore, the
results should not be used to draw conclusions about which method is more
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Table 7
Summary of Students’ Performance
(by Dependent Variable and Condition)

Dependent variable Findings

1. Mathematical reasoning

Graph interpretation (total score) 4>3>2=1
Mathematical explanations

Fluency 4>3>2=1

Logical-formal 4>3=2=1

Numerical-computational 4=3=2=1

Visual 4>3=2>1

Drawing 4=3>2=1

Flexibility 4>3>2=1

2. Graph construction (transfer task) 4=3>2=1
3. Metacognitive knowledge

General strategies 4=3=2=1

Specific strategies 4=3>2=1

Note: 1 = IND, 2 = COOP, 3 = IND+META, 4 = COOP+META. Use of the equals sign (=) indicates
that there are no significant differences between two groups. The greater-than sign (>) indicates
a significant difference in the mean scores of two groups.

“efficient.” Rather, the purpose is to increase understanding of how each pro-
gram operates relative to the others on these measures. It should also be
emphasized that the present study focused on only one instructional unit:
linear graphs. Although that unit is essential in the mathematics curriculum
(NCTM, 2000), longitudinal investigations and large-scale studies that focus
on other instructional units are needed to document the changes in other
schooling outcomes. Moreover, methods for cooperative learning (e.g., Slavin,
1996) and metacognitive instruction (e.g., King, 1994; Schoenfeld, 1985) vary.
Therefore, the generalizability of our findings may be limited to cooperative
settings and metacognitive training that are similar to the ones we explored
in this study.

Mathematical Reasoning

In the present study we analyzed mathematical reasoning in two comple-
mentary ways: One focused on the final answers, and the other on the writ-
ten explanations provided by students to justify their mathematical ideas. The
dual focus enabled us to develop a better understanding of how students
learn to think flexibly about linear relationships and their representations in
tables, graphs, and equations. Sometimes the final answers were correct but
based on wrong lines of reasoning, as seen in the following example of a
student’s response to the question about the graph in Figure 1: “The change
rate in the income of company A is greater [the conclusion is correct] because
its line is above Company B [the explanation is incorrect].” In other cases the
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final answers were incorrect but the explanations were correct. That hap-
pened most frequently when students made mistakes in the calculations or
in the solution of the equations. By formulating written explanations, stu-
dents learned valuable lessons about the need for accuracy, precision, and
completeness in their answers.

The data further showed that the average numbers of correct arguments
were 4.2, 5.2, 6.7, and 8.9 for IND, COOP, IND+META, and COOP+META
students, respectively. These data indicate that the number of arguments pro-
vided by IMPROVE students was almost double the number of arguments
provided by IND students. Furthermore, IMPROVE students frequently used
more logical-formal arguments, whereas other groups based their explana-
tions mainly on numerical- computational arguments. The reason may be
that, when studying the unit, IMPROVE students not only had to explain their
strategies to their peers and the reasons for using those strategies but also
had to analyze, compare, and contrast the meaningfulness of the tasks and
their solutions.

The emphasis on fluency and flexibility, two important elements of math-
ematical discourse, has several implications. First, students tend to conceive
of mathematics as a rigid subject based on arbitrary rules that allow only one
correct answer and one correct argument to explain the answer (Schoenfeld,
1985). By contrast, it seems that IMPROVE teachers (and students) succeeded
in building a mathematical community where students expressed their math-
ematical ideas fluently and flexibly, using various kinds of arguments to jus-
tify their ideas. Second, according to cognitive psychologists, elaboration is
an important means for enhancing understanding (Wittrock, 1986). Our study
confirmed that students who were exposed to metacognitive training did attain
a higher level of mathematics achievement and were better able to explain
their mathematical ideas in writing. In comparison with the written explana-
tions of all other groups, those of IMPROVE students were longer, more accu-
rate, and more frequently embedded with the new mathematical terms that
had been introduced in the unit. Often their explanations included mathe-
matical arguments and rationales, not just procedural descriptions or sum-
maries (e.g., “The change rate of line A is greater because the angle it creates
with the x-axis is larger then the angle that line B creates with the x-axis”).
These findings are in line with the New Standards (NCTM, 2000), as well as with
current studies showing that fluency and flexibility are essential components of
mathematical thinking (Nohda, 2000; Brenner, Herman, Ho, & Zimmer, 1999;
Dreyfus & Eisenberg, 1996).

Finally, beyond context and content, there is the role of the teacher. The
study illustrates several important facets of teachers’ roles, pertaining to meta-
cognitive guidance, organization of the classroom, and the selection and use
of worthwhile mathematical tasks that allow significant mathematical dis-
course to occur. Such tasks should include complex situations that present
quantitative information in different contexts, allow multiple representations,
or afford students opportunities to resolve mathematical conflicts (Mevarech
& Kramarski, 1997a; NCTM, 2000). For example, the task described earlier,
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answering questions about the change rates of Companies A and B, was in
many ways quite simple. It provided students with an opportunity to use their
understanding of linear graphs, rate of change, slopes, and speed—important
mathematical ideas in the middle grades. The task was simple enough that
all students could perform it in a test situation, difficult enough to challenge
students to think and reason about the properties of linear graphs and the
applications of abstract mathematical ideas to everyday situations, and rich
enough to allow students to engage in various levels of thinking—using quan-
titative or qualitative interpretations (Wainer, 1992) or computational or logical-
formal arguments (Leinhardt et al., 1990).

Transfer Knowledge

The findings indicate that students who were exposed to metacognitive train-
ing were better able to transfer their knowledge from graph interpretation,
which was taught in all classrooms, to graph construction, which was new
to all students. Salomon, Globerson, and Gutterman (1989) reported similar
findings, which showed that students who were exposed to metacognitive
training in the area of reading comprehension improved their scores not only
in reading comprehension but also in writing tasks (e.g., writing composi-
tions). These findings also support earlier conclusions (Mevarech, 1999; Hoek,
Eeden, & Terwel, 1999; Kramarski, Mevarech, & Liberman, 2001) that meta-
cognitive training leads students to link new and existing knowledge.

It is interesting that on the transfer task we found no significant differ-
ences between students who were exposed to the metacognitive training in
cooperative settings and those who were exposed to the training in individ-
ualized settings (COOP+META and IND+META). Two plausible explanations
are that (a) a seven-item test and scoring procedure based on correct and
incorrect responses is not sensitive enough to assess students’ transfer abil-
ity; and (b) the metacogitive questions were internalized by both groups to
such an extent that students’ interactions could have only a small additional
impact on transfer performance. Indirect support for the latter explanation
comes from the analysis of students’ metacognitive knowledge, which showed
no significant differences between the COOP+META and the IND+META
groups on several aspects of metacognitive knowledge.

Metacognitive Knowledge

The findings also showed that the two groups that were exposed to meta-
cognitive training (COOP+META and IND+META) scored higher on the
metacognitive questionnaire than the two groups that were not exposed to
metacognitive training (COOP and IND).

It is interesting to note, however, that the differences between the meta-
cognitive and non-metacognitive groups were observed only on domain-
specific metacognitive knowledge but not on general metacognitive knowl-
edge. That finding points to the importance of broadening the distinction
between general and domain-specific knowledge (e.g., Salomon & Perkins,
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1987) in the area of metacognition. Future research based on interviews and
observations may explore the development of general and specific metacog-
nitive knowledge under various conditions.

Comparisons Among the Conditions

Several issues relating to the comparison among the conditions need further
consideration.

First, why did the COOP+META students outperform the IND+META
students on graph interpretation (total scores), fluency, and flexibility in
providing correct mathematical explanations? Two factors may explain these
findings. One, it is possible that the type of metacognitive training used in the
present study is more appropriate for cooperative than for individualized set-
tings because learning in small groups provides a natural setting for students
to formulate and discuss questions such as those used in the present study
(Mevarech & Susak, 1993). Future research may focus on metacognitive train-
ing programs that are explicitly designed to be used in individualized settings.
Two, cognitive psychologists (e.g., Sweller, Merrienboer, & Paas, 1998) indi-
cate that the use of dual presentation techniques involving both auditory and
visual-writing forms increases cognitive performance more than does the use
of one form. Because students in the COOP+META condition more often used
dual presentation forms, they were likely to outperform their counterparts in
the IND+META condition who used mainly the visual-writing form.

Second, why did the COOP+META students outperform the COOP group
on both aspects of mathematical reasoning? A partial answer relates to the
quality of the mathematical discourse in the two cooperative conditions: Stu-
dents who had been exposed to the metacognitive training in cooperative set-
tings were better able to express their mathematical ideas in writing than were
students who had studied in cooperative settings without metacognitive train-
ing. That finding was also consistent with studies by Yager, Johnson, Johnson,
and Schneider (1986), and Webb (1989, 1991), who showed that the quality
of discourse in the groups related to students’ mathematical achievement. In
particular, Webb indicated that giving and receiving elaborated help is more
strongly related to mathematics achievement than is giving or receiving final
answers without elaboration or asking for help and not receiving it. To gather
further information on this question, students’ interactions under both condi-
tions should be videotaped and analyzed.

Third, why did the IND+META students outperform the COOP students?
The cooperative learning approach is rooted in cognitive theories assuming
that elaboration is an important means for enhancing understanding and that
cooperative settings are appropriate contexts for encouraging students to
elaborate information. The present study indicated that placing students in
cooperative groups is not sufficient for enhancing mathematical reasoning.
According to the present study, metacognitive training is an effective means
of facilitating mathematical reasoning, even when the training is implemented
in individualized settings.
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Finally, why did the COOP students not outperform the IND students
on mathematical reasoning? From a cognitive perspective, students who have
poor communication skills are less likely to benefit from cooperative learn-
ing because they are not able to communicate their mathematical ideas and
the strategies they have used, nor do they know how to ask questions, reflect
on their reasoning to explain it to their peers, or specify what they do not
understand. These findings support earlier studies arguing that there is a
need to structure learning in small groups and that features of discourse such
as “given reasons” must be practiced and reinforced (Webb, 1991; Webb &
Farivar, 1994; Cohen, 1996; Mevarech & Kramarski, 1997a).

Practical Implications and Future Research

Assuming that these findings generalize to other settings, the study suggests
several important practical implications. First, it appears that under certain
conditions students in junior high schools can learn to provide mathematical
arguments to justify their ideas. In particular, IMPROVE students under the
COOP+META condition were more fluent and flexible than the other students
in explaining their ideas in writing. These findings call for the design of addi-
tional learning environments based on similar components. Such environ-
ments are desirable at all grade levels and for all mathematical topics. There is
a need, therefore, to adapt IMPROVE and other COOP+META programs to the
needs of primary school children. The issue of how children’s mathematical
explanations develop under various conditions merits future research.

A second issue relates to the exposure of students to the COOP+META
program in various classrooms, not only in mathematics classrooms. There
is reason to suppose that if students study under the COOP+META condition
in mathematics as well as in other subjects (e.g., languages), they will be bet-
ter able to internalize and activate metacognitive processes. This issue is open
for future research.

A third issue relates to the norms for evaluating mathematical reason-
ing in junior high school classrooms. Our study emphasizes the importance of
changing classroom organization when providing metacognitive training. The
study also describes the kinds of arguments that students use in their mathe-
matical explanations. At present, many state proficiency tests and international
examinations (e.g., TIMSS-1999 and PISA, administered by OECD [Organisation
for Economic Co-operation and Development] countries) include tasks that
require students to explain their reasoning in writing. To acquaint students with
such tasks and the scoring procedure, teachers may prepare guidelines and
ask students to score one another’s explanations by using the guidelines and
activating metacognitive processes. Thus students will learn how to construct
explanations that are coherent, clear, and precise. Researchers in mathematics
education may design “task banks” that challenge students to provide expla-
nations. The task banks may be followed by analyses of students’ correct and
incorrect arguments.
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APPENDIX A

Presentation of an Open-Ended Graph Task in the
Metacognitive and Non-Metacognitive Conditions

The task:

The following graph describes the distance that seventh-grade students traveled in 7 hours
on an end-of-school-year trip. Was the speed during the trip constant? Explain your

reasoning in writing.

Distance (Km)

A A C
60
50
40
30
20
B
10
0 1 2 3 4 5 6 7
Time (Hours)
META conditions Non-META conditions
COOP+META: COOQOP:
Discuss the task with your classmates. Discuss the task with your classmates.
IND+META: IND:

What is the problem/task about?

Comprebension question:

Use the acronym DATA to describe
the graph:

Describe the x-axis and the j-axis.
Address the units and ranges of each axis.
Tell the Trend(s) of the graph or parts

of the graph.
Analyze specific points.

Strategic question:

Which strategy or principle is appropriate
for solving or addressing the problem
or task?

Connection question:

How is this problem or task different
from what you have already solved?

What are the students’ speeds
(a) During the first 3 hours?
(b) Between the 3rd and 5th hours?
(c) After the 5th hour?
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APPENDIX B

A Sample Graph Construction Task: Increasing,
Decreasing, Constant, and Curvilinear Graphs

The task:
Construct the following graphs:

@
(b
©

(d

The more time a student prepares for tests, the better her grades on the tests are.

The more time a student prepares for tests, the lower her grades on the tests are.

No matter how much time a student spends preparing for tests, her grades on the
tests are always the same.

When a student prepares for tests for up to 3 hours, the more time she prepares
for tests the better her grades on the tests are; but if she prepares for more than

3 hours, she becomes tired and her grades on the tests decline.
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