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The editors of the Special Issue called for a more integrative approach to the study of cognitive load and
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1. Introduction

The editors of the special issue argued that due to the ex-
plosion of information it is absolutely essential that students
learn to filter, select, and process incoming information and that
teachers learn to design instruction in such a way that their
students can acquire these self-regulation strategies. In other
words, 2 complementary research traditions are involved in this
important skill building processes, namely self-regulated
learning and instructional design. These 2 research traditions
have their own histories, theories, measuring instruments, and
types of interventions.

The title of the special issue reveals that the editors called for a
more integrative approach to the study of self-regulation and
cognitive load. They argue that research in these two separate lines
of research shows little overlap, even though studies often depart
from the same or similar research questions. The goal formulated
for the Special Issue is ambitious. The editors invited 6 research
groups and asked them (1) to present innovative, empirical
research that links the two domains of research and (2) to discuss
how bringing together the 2 vast bodies of research can provide the
foundation for research on contemporary issues in educational
science. Has this ambitious goal been accomplished? In the next
sections, I will first summarize the findings of the 6 papers, iden-
tifying important questions and concerns that emerged while
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reading the papers. Next, I will point to areas in need of
investigation.

1.1. Summaries and critical issues related to the 6 articles

The focus of 3 of the manuscripts was on depth of processing,
namely the papers by Schleinschok et al., Glogger-Frey et al., and
Sidi et al. The former two studies wanted to improve depth of
processing through improved metacognitive regulation. Both
research groups argued that students often overestimate their level
of understanding of a text and that this implies that they stop short
of grasping its full meaning. Each research group proposed a spe-
cific cognitive strategy that could help students to improve their
self-regulation strategies and they set up experiments to demon-
strate that use of this strategy would result in more efficient
monitoring and control. Sidi and her co-workers addressed a
related question, namely: Can depth of processing be triggered by
contextual cues?

Schleinschok, Eitel, and Scheiter (2017) predicted that
instructing students to make a free-hand drawing of the content of
a paragraph would be instrumental to (1) more accurate moni-
toring that allows students to make inferences that are directly
relevant to understand the deep structure of the text and (2) to
better cognitive control of the quality of what they encoded in their
memory schemata. They set up 2 experiments with university
students. In both experiments students were split up into a drawing
group and a text-only group. All students had to read an expository
text. After reading each of the 5 paragraphs they had to indicate
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how confident they were that they had encoded the paragraph well
(Jol). The students in the drawing condition made a free-hand
drawing after reading each paragraph. After reading the full text,
they rated the quality of their encodings and indicated which
paragraphs they wanted to re-study. Finally, they were requested to
rate the degree of cognitive load (CL) that they had experienced.
The research group postulated that drawing the content of a
paragraph might be more effective than other learning strategies,
such as summarizing and paraphrasing the text, because students
will anticipate that they have to construct a coherent internal
pictorial memory code, in addition to a verbal memory code. The
researchers predicted and found that generating free-hand draw-
ings after reading a paragraph leads to a more accurate meta-
cognitive judgement of the quality of their learning (Jol) that better
matched performance on the posttest. Students in the drawing
condition were not only more aware of the quality of their under-
standing, they also preferred to re-study paragraphs for which they
had the lowest Jol's, thus demonstrating that anticipation of the
free-hand drawing task did not only guide and support their
monitoring but it also informed them on the knowledge gaps they
still had and needed to fill.

Experiment 2 was similar to experiment 1, but all students were
allowed to restudy the paragraphs they had indicated for restudy.
Contrary to expectations, students in both conditions selected
paragraphs for re-study for which their JoL's were lower and they
spent more time restudying them. In line with previous research, a
high score on experienced CL was associated with lower scores on
the different posttests (drawing task, verification task, and diagram
labeling) in both experiments. However, this relation disappeared
when JoLs were simultaneously entered into the regression model
(this is not surprising given the high negative correlation (—0.69)
between the two variables). The researchers concluded that JoL's
rather than the experienced CL predicted post-test performance in
the drawing condition. Even though I am not convinced that this
research group captured CL in a valid way (see my discussion in the
section on the meaning and measurement of CL), they demon-
strated that requesting students to make a visual representation of
the content of a paragraph after they finished reading it, is an active
generative task that makes them aware that it is not sufficient to
monitor at the surface level. Inspection of the internal pictorial
code may act as a strong cue that more accurate monitoring is
necessary to discover the deep structure of each paragraph.

Glogger-Frey, Gaus and Renkl (2017) set out to demonstrate that
encouraging students to detect the rule or principle in multiple
cases results in better understanding the deep structure of a text or
problem. They designed a SRL environment and trained 8th grade
students in a 20 min SRL training session to monitor for the critical
features in a ratio problem. They compared the effect of the in-
vention group with the performance of students who worked with
guided examples. The two groups were compared on different
process variables, such as their level of encoding, self-efficacy,
awareness about knowledge gaps, and experienced CL, as well as
their performance on a transfer task. The experiment was con-
ducted in 2 regular school lessons. At the end of the first training
sessions, the groups did not differ significantly on self-reports that
assessed their self-efficacy and perceived knowledge gaps, but a
main condition effect was noted on reported extraneous load
measured with a 5 item scale. Extraneous load interacted with self-
perceived performance in math and science (measured just before
the training sessions), suggesting that only students who believed
their math and science performance to be low had indicated that
the extraneous load of the self-regulated activity was high (see my
comments on capturing CL in the discussion section). The recall test
conducted four days later revealed that there was no significant
difference in the encoding of the surface features of the problems,

but that students in the invention condition showed a deeper
encoding of the problem's ratio structure. The students then
worked on a second problem in their respective conditions, fol-
lowed by a ten minutes lecture on ratios in physics, and by a near
and far transfer task. It was predicted and found that the students
who had worked in the invention condition would outperform
students in the guided condition on the near and far transfer
problems. Interestingly, both deep-structure encoding and extra-
neous load mediated the effect of the type of training sessions on
transfer performance. And further exploratory analyses revealed
that students in the invention condition had improved their in-
depth processing during the second invention phase. By contrast,
the explanations that the students in the guided practice conditions
gave for the steps that an imaginary student took got worse during
the second guided session. It is a pity that the researchers failed to
measure students' self-efficacy, perception of extraneous load,
awareness of knowledge gaps, and level of encoding in relation to
the second practice sessions. This would have given us more insight
into the advantages and disadvantages of having 2 training ses-
sions. For example, would the students in the invention condition
still report higher extraneous CL in the second invention session?
Did insight into the structural relations occur already during the
first SR training session in some student pairs and was it consoli-
dated in the second training session in all student pairs? What was
the exact role of the direct instruction that followed the second
training sessions in consolidating this insight? Did it have the same
effect in both conditions? These are but a few questions that await
scientific investigation (see my discussion on multiple time points).

Sidi, Shpigelman, Zalmanov, and Ackerman (2017) informed the
reader that the results of studies that compared students’ perfor-
mance in computerized learning environments with learning from
texts in traditional environments are inconclusive. They clarified
that the reported lower performance on screen as well as persis-
tence of a paper preference in all age groups are not caused by
technological disadvantages but are due to a qualitatively different
reading process, characterized by many interruptions, attentional
shifts, and multi-tasking. Overconfidence and less efficient work on
screen contrast sharply with the reliable monitoring displayed
while reading on paper. Sidi et al. (2017), hypothesized that screen
environments encourage students to adopt a shallower processing
style than paper environments, especially when they pick up cues
that legitimize shallow processing. They wanted to know whether
screen inferiority was due to the CL created by reading lengthy
texts, or whether screen inferiority could also be demonstrated
regardless of the reading burden. They set up 3 experiments to
study the effect of different manipulations on response time, re-
ported confidence after doing a task, calculated overconfidence,
processing efficiency (correct solutions per hour), and success rate.
They selected 6 challenging logic problems that could be stated
briefly. In the first experiment, undergraduates were randomly
allocated to the on screen and on paper group and worked either
under time pressure (TP) or in a loose time frame (LTF). As pre-
dicted, TP resulted in screen inferiority reflected in lower pro-
cessing efficiency and success rates, as well as poor calibration.
Remarkably, when working in a LTF, these students showed more
efficiency, higher success rates, and no differences in over-
confidence, compared to the on paper group.

In the second experiment, the same problems were designed in
a metacognitive transfer paradigm. Each of the 6 problem sets
consisted of the following procedure: solving an initial problem,
followed by a confidence rating, an explanation of the problem
solution, solving a transfer problem, and a confidence rating. Stu-
dents were told that they could work in a LTF but needed to monitor
the time to complete the full problem set in time. The overall
success rate of the initial problems was low, but improved in the
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transfer tasks. The on screen group invested less time in solving the
initial and transfer problems and also devoted less time to reading
the explanations of the solutions compared with the on paper
group. Separate analysis of the initial problem data yielded screen
inferiority (i.e., lower success rate and more overconfidence) but no
significant difference in processing efficiency. When analyzing the
transfer problem data separately, no significant differences were
found between the on screen group and the on paper group in
success rate and calibration score, but the processing efficiency of
the on screen group was significantly better despite minimal use of
sketches and less time invested. Sidi et al., interpreted these results
as evidence for screen inferiority under conditions of low perceived
importance. They explained that - similar to TP — low perceived
importance is interpreted by the students as a sign that adopting a
more shallow processing style is legitimate. I have some difficulties
understanding the researchers' line of argument. They maintain
that the experimental design had framed the initial problems as
‘preliminary’ and that the students in the on-screen condition had
picked up that signal, thus appraising the initial problems as ‘low in
importance’. Yet, I could neither find instructions to this effect nor
could I detect any evidence of a manipulation check in the manu-
script. We need to know whether or not the students detected this
cue and how they interpreted it, before conclusions can be drawn
about the relation between this cue and the difference in process-
ing style during the initial and the transfer problems. The third
experiment is a replication of the first one, using 32 three word
compound remote associate tasks. As predicted, screen inferiority
in overconfidence was found under TP but not under LTF. None of
the other measures differed significantly.

Sidi et al., reported important findings that have serious impli-
cations for the way we test and evaluate students. They showed
that working on screen can be as effective as working on paper, but
that students who work on screen are more susceptible to cues that
trigger shallow processing. An avenue for future investigation
would be to document the differences in cognitive and meta-
cognitive strategies that students who work under these different
conditions use. I will return to this important point shortly. Here, it
will suffice to state that the meaning students attach to learning
tasks, whether they are presented on screen or on paper, unfolds
from the moment they interpret the task and the task demands till
well after task completion.

Van Loon, Destan, Spiess, De Bruin and Roebers (2017) maintain
that only individuals, who are able to accurately self-evaluate
learning, are able to engage in adaptive self-regulation. They
found that the SR strategies that young children use are often not
adapted to the situation. Possible reasons are that young children
cannot yet differentiate well between correct and incorrect re-
sponses and that they are overconfident that they can do the task.
This implies that they often start a learning task without thinking
and use the first learning strategy that comes to mind. Van Loon
and colleagues wanted to know what the reasons are for young
children's inaccurate self-evaluations and their overconfidence.
They recruited kindergarten pupils (approximately 6 years old) and
second graders (8 years old) to study age differences in over-
confidence and accuracy of self-evaluations. They presented Asian
ideograms together with a picture that represented the meaning of
the Kanji figure. In the recognition test, the children had to select
the Asian ideogram that represented the correct meaning from
among 4 ideograms, and rate their confidence in performance ac-
curacy on a seven point scale. After they had received feedback, the
children again expressed their confidence in performance accuracy
on a thermometer scale. Finally, they had to give themselves credit
points, taking into account the visually represented feedback. The
complete session was repeated a week later with similar Kanji
figures and the data from the 2 sessions were aggregated. In line

with the researchers' expectations, self-evaluations were less ac-
curate for the younger children, but they did make use of valid cues
(i.e., item difficulty) to judge the accuracy of their performance.
Contrary to expectations, both age groups were overconfident for
incorrect responses but made adequate use of performance feed-
back to improve their self-evaluation. Yet, the older children were
consistently less confident for incorrect outcomes than for correct
responses, compared to the younger children. Also, the Kinder-
gartners assigned themselves inappropriately high self-rewards for
incorrect responses, despite the received negative feedback. The
researchers concluded that their findings do not confirm previous
research by Koriat and Ackermann that showed that children under
8 years cannot yet base self-evaluations on cues derived from the
study experience. The fact that the younger children did not use the
provided feedback to the same extent than the older children did
when self-rewarding, was interpreted by the researchers as support
for the self-protective bias hypothesis. Referring to the relevant
literature, they point out that 6 year olds correctly understand the
reward principle but that they apply it only for their peers and not
for themselves. When reading the manuscript, I was wondering
whether there was another explanation for the overconfidence of
the younger age group and their inappropriate self-rewards.

The present experiment shows that both the younger and the
older age group decoded the informational properties of the
feedback correctly (i.e., they used the feedback to correct their self-
evaluations). Regrettably, the researchers did not investigate
whether there were developmental differences in the positive and
negative emotions that were triggered by the feedback. Harter’s
(2006) developmental analysis revealed marked differences be-
tween children that are relevant to this study: below the age of 8,
children show an inability to integrate attributes and emotions of
opposing valence and they are inclined to overestimate their talents
and skills. Between the ages of 8 and 11 children develop a repre-
sentational system in which activities that elicit positive emotions
are integrated with activities that trigger negative emotions, so that
opposing valences may be considered simultaneously.

In light of these developmental differences, I wonder whether
negative feedback had more impact on the older than on the
younger children. I reckon that most of the older children in this
study had already acquired 2 related school principles, namely (1)
that the outcome of a learning experience should be used as the
primary cue for self-reward, and (2) that negative feedback is
consequential in nature. The point I am making is that the older
children may have lowered their self-reward after receiving nega-
tive feedback, because the negative emotions triggered by the
negative feedback intruded on their task specific enjoyment. In the
same vein, | speculate that the younger children were still
(partially) blind to the 2 school principles mentioned above,
meaning that the negative feedback did not carry the same weight.
It either did not elicit negative emotions or only very mild ones
which did not intrude on their task specific enjoyment, because
they could not deal with opposing valences. In other words, the
positive emotions elicited during the learning episode lingered on
in their information processing system and were used as the pri-
mary cue for self-reward (see also Fredrickson, 2004 who docu-
mented that positive emotions elicited during an activity give
people a clear sense of purpose and a positive mind-set and are a
strong antidote to negative emotions).

Raaymakers, Baars, Schaap, Paas, and Van Gog (2017) predicted
that the feedback given after solving complex problems may
change participants' appraisal of the mental effort they have
invested in doing the set task. Such modification is problematic,
because it raises doubts as to the value of ‘mental effort’ as an in-
dicator of cognitive load. Raaymakers et al. (2017), designed an
intervention to investigate the influence that feedback has on



M. Boekaerts / Learning and Instruction 51 (2017) 90—97 93

perceived mental effort. They asked participants with a broad age
range to solve several 5 step problems on line. In the first experi-
ment, participants had 1 min to solve each of the 5 complex, un-
familiar problems mentally. The participants had been randomly
assigned to any of 3 feedback conditions: positive, negative and no
feedback. The problems were difficult to self-assess which allowed
the researchers to manipulate the FB. They predicted and found
that students who received predominantly positive feedback
immediately after finishing each of the five problems (e.g., PNPPP)
would rate the invested effort lower than participants who pre-
dominantly received negative feedback (e.g., NPNNN) irrespective
of their perceived level of learning. Although no significant differ-
ence in performance was found between the 3 feedback conditions,
appraisals of mental effort decreased linearly across conditions
from FB- to FB° and FB-+. Experiment 2 was an attempt to replicate
the results of experiment 1 and - in addition - the researchers
investigated whether there was a timing effect. Dissimilar to
experiment 1, there were 5 feedback conditions, namely (1) no
feedback, (2) predominantly positive feedback with a reversal on
the second task (PNPPP), (3) with a reversal on the fourth task
(PPPNP), (4) predominantly negative feedback with a reversal on
the second task (NPNNN) and (5) with a reversal on the fourth task
(NNNPN). The valence of FB, irrespective of where in the sequence
it was given, affected students' perception of the mental effort they
had invested.

Raaymakers et al. (2017), wanted to replicate the results of
experiment 1 with ecologically valid problems in a classroom
setting. Higher education students were randomly assigned to the 3
feedback conditions. They worked in an on-line learning environ-
ment and started with an introductory video with a model example
before solving the 5 biology problems with increasing complexity.
After solving each problem, students had to self-assess their per-
formance. Immediately afterwards feedback appeared on screen,
according to the FB-condition they were in (FB = your answer has
been registered; FB— = 2 points lower than their outcome
appraisal; FB+ = 2 points higher than their outcome appraisal).
Finally they had to rate their invested effort on a scale that ranged
from O to 5. Although the effort ratings were overall lower than in
experiments 1 and 2, a main feedback condition effect was noted.
Students in the FB + condition scored significantly lower on re-
ported mental effort than students in the FB- condition, thus
replicating the results of experiments 1 and 2.

Taken together, the 3 experiments show that the valence of
feedback has a prominent impact on reported effort. This implies
that external feedback provided by somebody in authority was
used as a cue to modify one's recollection of the effort invested in
the problem solving process. It is a pity that the students were not
asked for a confidence rating prior to receiving the feedback. This
would have allowed the researchers to establish whether or not the
students' outcome appraisal and/or their judgement of learning
were overruled by the positive and negative feedback. An hy-
pothesis that could be tested in future research is that the effect of
feedback on mental effort was mediated by the affect triggered by
the feedback. Positive feedback may have created positive affect
(joy, relief or contentment) and this overall positive affective
experience may have temporarily embedded the learning experi-
ence in a positive network of associations, prompting students to
scale down the amount of effort. The reverse effect may have been
produced by negative feedback: FB- may have triggered irritation,
frustration, and/or tension and these negative emotions may have
acted as a cue to scale up one's effort rating. Kuhl (2000) illustrated
that when affect is mounting, the students' perceptions of the sit-
uation changes as well as their effort and competence appraisal. |
will return to this point shortly (i.e., in the section on neglected
aspects of SR).

Maranges, Schmeichel and Baumeister (2017) argued that 2
cognitive states, namely CL and ego depletion undermine delib-
erate, controlled, and complex thinking, because these states
deplete resources. However, the resources that are affected by these
2 states are not the same. They set up a direct comparison of CL and
ego depletion in 3 experiments. In a first experiment, undergrad-
uate female students had to read a dull and dense medical text out
loud. The control group was then asked to immerse their hand in
icy cold water while the CL group was asked to do the same, but
perform a concurrent task as well (count backwards in increments
of 3). The ego depletion group had to read the same text, but they
had to make an effort to express interest and enthusiasm in what
they read. The hypothesis was confirmed: both CL and ego deple-
tion influenced students’ capacity to tolerate pain, but in the
opposite direction. Counting backwards during the test increased
persistence of holding the hand in ice water relative to the control
condition. Having to pretend a text was interesting resulted in
quitting faster. The second experiment involved a visual memory
task with adult participants. The CL group had to remember a 10
digit numbers string while looking at a set of negative, positive, and
neutral pictures. The ego depleted group was asked to write 2 short
essays in a fixed period of time, but they were given strict in-
structions not to use certain letters. Students in all conditions were
asked to report on the positive (i.e., alert, inspired, determined,
attentive, and active) and negative emotions (i.e., upset, hostile,
ashamed, nervous, and afraid) they had experienced while viewing
the pictures before they got the visual memory test. Results showed
no condition effect on visual memory, but the reported emotions
were affected differentially. The CL group reported less negative
and more positive emotions than the 2 other groups and the
reversed pattern was found in the ego-depletion group. These re-
sults were confirmed in a 3rd experiment with a lexical judgement
task and seem to be quite robust. The researchers explained that
students in the depletion group had used self-control to follow the
complicated instructions. This had temporarily depleted their self-
regulatory resources, which made it more difficult for them to
ignore the aversive stimulus in experiment 1 (i.e., quitting faster),
and override the negative feelings during the visual memory and
lexical judgement tasks. Dissimilarly, students in the CL group had
to perform a concurrent task, which increased the processing de-
mands in working memory. This manipulation reduced the impact
of the aversive stimulus in experiment 1 (i.e., it increased persis-
tence), and decreased the negative feelings and increased the
positive feelings in experiments 2 and 3.

I certainly find that Maranges et al. (2017), made a valuable
contribution to the field. They introduced ego depletion in the
educational psychology literature and I am sure that future studies
will underscore the importance of this construct for classroom
research. However, my interpretation of the findings is slightly
different. Requesting students to focus on a concurrent task while
they hold their hand in ice cold water is in fact prompting them to
use an emotion regulation strategy. As explained by Boekaerts and
Pekrun (2016) it is often extremely difficult for students to ignore
intrusive thoughts and upsetting information in the learning
environment, because the monitoring system keeps focusing on the
disturbing stimuli. A way to get around negative monitoring is to
use a coping or emotion regulation strategy, such as ‘reappraisal’,
‘mental distraction’ and ‘mental disengagement’. These and similar
coping strategies redirect the focus of the students' attention (i.e., a
shift in monitoring strategy). It is important to note in this respect
that a distracting mental task may free WM from worry and tension
associated with the primary task (e.g., in experiment 1), thus
creating more rather than less room for cognitive processing. In my
judgment, it needs to be tested whether the observed effects were
due to increased processing demands (i.e., creating CL) or due to the
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use of an emotional regulation strategy called “mental distraction.
More precisely, were the students in the CL group more alert,
inspired, attentive and active and less hostile and upset relative to
the students in the other groups due to the induced CL or because
they used an effective SR strategy?

Taken together, the 6 papers provide examples of how different
research groups conceptualize and measure CL and how they try to
link CL to SR. Each contribution shows a different approach and
each approach has its strong and weak points. However, there are
some general issues that beg for greater clarification and elabora-
tion if we want to gain better insight into the relation between CL
and SR, namely (1) is there consensus on the meaning and mea-
surement of CL? (2) What methodologies can be used to capture CL
in real time and link it to strategy use, (3) what key aspects of SR
remained underexposed in the different manuscripts, and (4) what
cues do students pick up to adapt to increased and decreased
processing demands. I will address each of these issues in turn.

2. Is there consensus on the meaning and measurement of
cognitive load?

Let me inform the reader that [ am not an expert on CL. When
reading the articles, I looked for the authors' definition and oper-
ationalization of CL, but not all research groups provided a working
definition. They all seemed to assume that overload leads to
reduced learning and that this is induced when the total amount of
cognitive processing that is needed exceeds the students'
maximum cognitive processing capacity. Yet, none of the research
groups conceptualized and operationalized CL in such a way that it
was transparent for the reader how much processing load that
performing the respective tasks had imposed on the student's
cognitive system. In the absence of explicit information about the
expected cognitive capacity demands of the tasks and without in-
formation about the students' working memory capacity (WMC), it
is impossible to establish whether or not the respective tasks
imposed an optimal or suboptimal CL on the participants. We also
do not know whether the students’ cognitive processing capacity
was exceeded in any of the experiments reported in the Special
Issue. In fact, I was struck by the lack of conceptual clarity which
extends to the definitions and measurement instruments.

Each research group selected an instrument from the available
list of instruments that measures whether or not CL occurred.
Surprisingly, most researchers picked this instrument without
specifying the specific components of CL that they intended to
measure (e.g., overall cognitive load, germane load, intrinsic load,
extraneous load). I have serious doubts that the various self-report
measures used by the different research groups to measure aspects
of CL did indeed capture CL in a valid and reliable way (see also
Moreno, 2010). For example, Schleinschok et al. (2017), used a 2
item questionnaire to assess CL in terms of the students’ appraisal
of the difficulty level of the learning tasks. Granted, self-reports of
perceived level of difficulty of a task gives us an indication of how
the students perceive and interpret the task, but this appraisal is
only a naive way of assessing the complexity and difficulty level of
the task in terms of the students' confidence judgement that they
can answer test questions on the paragraph. Schleinschock et al.
(2017), reported that the correlation between the students' diffi-
culty appraisal and their judgement of learning (Jol) was quite
strong, indicating that these two appraisals are measuring quasi the
same thing. Hence, we may doubt whether the criteria that the
students used to rate the difficulty level of the respective tasks were
different from the criteria they used to assess their confidence that
they understood what was written in the respective paragraphs.
My distrust in using perceived difficulty level as a measure of CL
stems from a finding reported by Crombach, Boekaerts, and Voeten

(2003). They tested the internal structure of Boekaerts' appraisal
model in the math domain using Lisrel and concluded that 2 of the
students’ task appraisals, namely their difficulty appraisal and their
subjective competence appraisal were not empirically
distinguishable.

I was more enchanted by the way Van Loon et al. (2017), oper-
ationalized CL. They used the objective difficulty level of the Kanji
problems to determine each task's intrinsic CL (i.e., the difficulty
index of a Kanji is equal to the percentage of correct answers for a
particular item across a separate sample of participants in the same
age range, corrected for the probability of guessing). My position is
that researchers who want to know what the processing demands
are of the tasks they selected for their studies need to determine
task complexity in terms of pre-established categories of
complexity before the experiment starts. For example, several re-
searchers have defined task complexity in terms of the multidi-
mensional structure of a problem or task, describing a problem in
terms of the multiple paths to its solution and the uncertainty of
possible outcomes (see Garden et al., 2006 who determined the
complexity index of all math tasks used in the TIMMS project;
Musso, 2016).

Glogger-Frey et al., 2017 explicitly mentioned that they measured
extraneous load. Using, Leppink, Paas, Van der Vleuten, Van Gog, and
Merrienboer (2013) five item scale, they examined whether the
students who worked in the invention condition experienced more
extraneous load than students in the guided condition, and whether
the perceived extraneous CL had impaired their performance on a
transfer task. Interestingly, this research group took account of in-
dividual differences in beliefs about their math and science perfor-
mance and reported that these beliefs interacted with CL. Students
who believed that their self-perceived skills in math and science
were adequate were less affected by extraneous CL than students
who judged their competence to be low.

Sidi et al. (2017), used time pressure to induce CL and compared
the performance of students who worked on screen and on paper. It
is not clear whether TP affects all students in the same way. Hence,
it needs to be verified whether some students were cognitively
overloaded and others still functioned at an acceptable level of CL
before drawing firm conclusions. Finally, Maranges et al. (2017),
selected a concurrent task (i.e., counting backwards and remem-
bering a 10 digits span) to induce CL. It is difficult to judge how the
concurrent task interacted with the students’ visual encoding of the
positive, neutral and negative pictures. The task may have triggered
emotion regulation strategies in addition to an increase in pro-
cessing demands.

Raaymakers et al. (2017), used Paas's one item mental effort
scale to assess CL. It is not clear to me how untrained participants
recruited on-line rated the amount of effort invested in these un-
familiar tasks? Should simply doing the task be rated as ‘no effort at
all’ or should it be rated as ‘average effort’? In line with the com-
ments levelled at the measurement of difficulty level, I have doubts
that the mental effort scale captured CL in a reliable and valid way.
Apart from the fact that the psychometric properties of a one-item
mental effort scale cannot be determined, it should not be assumed
that all participants can accurately rate the mental effort they
invested in a task. Their naive judgements of the mental effort they
invested may not even align with what actually happened during
problem solving. At the very least, participants need to be trained to
use explicit criteria to accurately rate how much effort they
invested to meet the demands of the imposed task. I would
recommend researchers on CL to determine the processing de-
mands of the tasks they set in terms of their complexity and diffi-
culty level. By arranging the tasks in order of increasing complexity
and/or difficulty level, they can then determine at what point in the
sequence the students' WMC is exceeded (see my discussion on
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multiple time points).

At this point in the discussion I would like to remark that there
are wide individual differences in WMC and attentional resources
and by implication in the effect that processing additional infor-
mation and performing concurrent tasks may have on perfor-
mance. Without an indication of the studentss WMC, the
experimenter has no inkling of how much processing capacity is
used. Admittedly, some highly complex tasks and instructional
procedures may create cognitive overload in all students but we
need fine grained information on whether or not the CL induced by
the target task, the extra task, and/or the instructional procedures
exceeded the WMC of all the students or only of students with low
WMLC. In the latter case, the performance of students with mid to
high WMC, as well as their score on various process measures,
would not be expected to be different from that of the students in
the control group. Although assessment of individual differences in
WMC and attentional resources is possible, this type of objective
measurement is absent from most educational psychology
research. A notable exception is the work by Musso (2016). She
used a computerized task, called AOSPAN (Unsworth, Heitz,
Schroch, & Engle, 2005) to measure WMC. This is a valid and reli-
able indicator of WMC and has been used in a variety of research
areas. Using this instrument, Musso (2016) found that individual
differences in WMC influenced math problem solving performance
directly. She also reported that positive appraisals - more specif-
ically a positive subjective competence appraisal, as well as positive
emotions experienced during the task - moderated the effect of
cognitive processing capacity on math performance.

3. What methodologies can be used to capture CL in real time
and link it to strategy use?

As mentioned previously, most of the studies presented in this
Special Issue are limited to self-reports that estimate overall CL.
Although I do not find fault with the use of self-reports when the
object of investigation is a non-observable state or process, I think
that self-reports should always be flanked by other measurement
tools, such as tracks left behind while working, performance in-
dicators, observations by trained professionals, in-depth in-
terviews, and stimulated recall video sessions. Retroactive
appraisals cannot accurately register what has actually happened
during the learning process, because students cannot recall the
what, how, when and why of the learning process in detail. This
criticism can also be levelled at the new measurement instruments
that have become available recently (Leppink et al., 2013) to sup-
plement overall estimates of CL. These self-reports measure
different types of CL, namely the degree of mental effort invested
(1) in the complexity of this activity (intrinsic CL), (2) in enhancing
my knowledge and understanding (germane load) and (3) in un-
clear and ineffective explanations and instructions (extraneous
load). Granted, these differential questions for the three types of
load definitely upgraded the overall measures of CL and will help to
disambiguate the theoretical distinctions. Yet from my experience
with administering questionnaires to students, I doubt whether all
students can differentiate between these theoretical distinctions.
Even if they comprehend all the items, their answers leave us in the
dark as to the underlying processes.

This brings me to an essential aspect of measuring CL, namely
the fact that it is contextualized and consequently that it does not
suffice to ask retrospectively whether CL occurred. It may have
occurred several times during the learning episode, which calls for
a design with multiple time points. For example, students who
solved a series of problems may have experienced several increases
in task demands at different points in the sequence. At one time
point they may have become more alert and met the challenge with

a shift of monitoring strategy. At another time point, they may have
avoided distractions. And, at yet another time point they may have
downscaled their current goal or even given up on the task alto-
gether. Likewise, a felt decrease in task demands may have resulted
in coasting behaviour, reflected in being more relaxed, monitor less
accurately, choosing surface level learning strategies, and adopting
a different goal. Clearly, these adaptations may alter the learners’
cognitive and affective states, including their awareness of CL,
which makes it difficult to report it retrospectively.

A major challenge for CL research is to come up with mea-
surement instruments that can track shifts in perceived task de-
mands in real-time and provide detailed information about the
unfolding cognitive processes and SR strategies that students use to
counteract increased or decreased processing demands. In the
studies reported in this Special Issue, the researchers treat the self-
regulation process as one holistic unit and ignore the sequential
and temporal characteristics of the learning experience. For
example, in the study by Glogger-Frey et al., 2017 the experiment
consisted of a sequence of different learning activities (i.e., ques-
tionnaires, 1st training session, questionnaires, tests, 2nd training
session, direct instruction, solve transfer problems). This implies
that the students may have experienced different challenges and
threats during the experiment (e.g., experienced as low confidence,
awareness of gaps in knowledge, frustration because of task
complexity and confusing instructions). It is evident that these
changes in the learners' cognitive and affective states influence
each other over time. It is therefore advisable that in future
research on the interface between CL and SR the sequential and
temporal aspects of the students’ involvement with the learning
activity are taken into account. This would allow the researchers to
examine where exactly in the learning sequence cognitive (over)
load occurred, its duration, and the rate at which it occurred in close
connection with the SR processes that the students used to coun-
teract it. For further discussion of these types of analyses see
Azevedo, 2015; Greene and Azevedo 2010; Molenaar, 2014;
Molenaar & Chiu, 2014; Molenaar & Jarvela, 2014; Winne, 2014.

Apart from analyzing interaction data from traditional computer
tracking of the learning process, CL researchers may also want to
familiarize themselves with interaction data from working memory
load-related measures, such as EEG alpha frequency band power,
eye-movement data, pupil diameter, multi-touch interactions, heart
rate, skin conductance, and neurophysiological data recorded from
the scalp (for early introductions of psychophysiological measures
into the working load literature, see Paas, Van Merriénboer & Adam,
1994; Paas, Tuovinen, Tabbers, & van Gerven, 2003). Recently,
Gerjets and colleagues, working at the Leibnitz Institute fiir Wis-
sensmedien in Tiibingen pointed out that learning applications that
run on devices with an interactive screen (e.g., multi-touch tables)
have built-in sensors that register intuitive gesture-based in-
teractions during the learning process, such as touches, swipes, and
pinches to zoom in and out, which can be used to determine
cognitive workload. Gerjets and colleagues collected interaction
patterns of primary school children while they solved math prob-
lems on a multi-touch table and then used machine learning
methods on these high-resolution interactions (see Mock et al.,
2016). The results showed that touch screen interaction patterns
can be used to predict high levels of cognitive workload induced by
tasks of varying difficulty levels, even without knowing anything
about the learners’ speed and accuracy of task performance. Inter-
estingly, increased cognitive workload manifested itself differently
for different students. Additionally, Gerjets and his team demon-
strated that EEG alpha frequency band power and pupil dilation are
also sensitive to register increased processing load on executive
functions, such as updating and inhibition (Scharinger, Soutschek,
Schubert, & Gerjets, 2015). The most promising avenue to monitor
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CL seems to rely on neurophysiological data (i.e., data from skin
electrodes on the scalp). Gerjets (2017) predicted that in the near
future, high resolution touch sensor interaction data may be used
for the automatic assessment of cognitive and affective learner
states and that methods of graded workload detection will become
available to help develop optimal math learning environments by
means of real-time EEG workload adaptation of the learning tasks.
It is certainly promising for research groups who investigate CL
that their studies need not be restricted to measuring CL with
self-report measures. Multiple methodologies for studying the
effect of CL on different process and outcome variables in real time
have been brought to the research table.

4. Key aspects of SR that remained underexposed in the
different manuscripts

I hope it is clear from my discussion of the various papers, that |
regret that affect still takes a back seat in research on CL and SRL.
The same holds for goals and motivation regulation strategies.
While reading the various articles I continually asked myself why so
little attention had been given to the 3rd layer of self-regulated
learning as described by Boekaerts more than 20 years ago
(Boekaerts, 1997; 1999). She described SRL as a three layered pro-
cess (see Fig. 1). The core or inner layer of SRL refers to the learning
process per sé (self-regulated learning), or more concretely to the
way students process information and hence to the selection and
organization of the cognitive strategies that make up the learning
process. The middle layer refers to the regulation of the learning
process (self-regulated learning), meaning to the choice of meta-
cognitive strategies that direct, monitor, and control the learning
process. The outer layer refers to the self (self-regulated learning),
more specifically to the way students protect the learning process
from competing action tendencies. Their choice of goal(s) based on
their beliefs about learning and social interactions in the classroom
and the use of motivation regulation strategies are central to this
layer.

Boekaerts and Corno (2005) argued that self-set goals are the
driving force for choosing cognitive and metacognitive strategies
that direct the learning process and for selecting motivation and
emotion regulation strategies that support this choice, especially

regulated/ lear:

Protecting learning goals from other goals

Steering and directing the learning process

Processing information

Choice of cognitive strategies

when obstacles and distractions make it difficult to protect the
learning goal from competing action tendencies. Using this model
as a framework for classifying the papers in the Special Issue, I
conclude that 5 of the 6 papers deal with the middle and inner layer
of the model (regulated learning) and that only the paper by
Maranges et al. (2017), considers aspects of the outer layer.

It is important to realize in this respect that most of the tasks
that the students had to do in the respective studies were set in
controlled experimental settings. The students had to work on
imposed goals, which they may or may not have perceived as
valuable and instrumental to increase their own resources (Ryan &
Deci, 2009). A vast body of literature documents that the beliefs
students hold about learning in and out of school — especially their
value and competence beliefs - are conditional for the use of
cognitive (Entwistle, 1998), metacognitive (Efklides, 2011) and
motivation regulation strategies (e.g.,Wolters, 2003). In light of
these findings, I would recommend that CL researchers select
ecologically valid task and measure students' situation-specific
value and competence appraisals (see Boekaerts, 2002), as well as
their self-set goals prior to the problem solving process, and again
after task completion. If multiple measurement points are used, it
would allow researchers to detect shifts in beliefs during the
experiment, and to examine how, when, and why these shifts have
reshaped the students' goal(s) and the SR strategies derived from
these goals. This would answer relevant questions, such as: why did
the explanations that students gave in the guided condition in
Glogger-Frey et al., 2017 s study deteriorate? Did they perceive the
2nd training session as less valuable? Did they feel overconfident?
Did they experience negative affect?

5. What cues do students pick up to help them adapt to
increased and decreased processing demands?

Sidi et al., pointed out, that students are aware that different
learning tasks and learning contexts have different purposes. In
other words, they do not choose their goals randomly. Rather, they
look for cues that may inform them what is expected, possible given
the context, and legitimate. If such cues are detected, students
interpret them and make choices based on this interpretation (e.g.,
select strategies from the repertoire of cognitive and metacognitive

Choice of metacognitive strategies

Choice of motivation regulation strategies

Fig. 1. Three layered model of SRL, depicting the functions of diverse self-regulation strategies.
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strategies to start the task, and also choose motivation regulation
strategies to complete the task). [ enthusiastically embrace the cue-
utilisation framework that the editors of the Special Issue proposed
for setting up joint research (De Bruin & Merrienboer, 2017). A cue-
driven model can identify the cues that students of different age
groups actually use to detect an increase or decrease in processing
load. I am confident that using such a model will increase our un-
derstanding of the cues that trigger students' choices of cognitive
and metacognitive strategies and the cues that prompt them to
regulate their motivation in order to enact this choice. To get a
comprehensive picture of the cues that work for students, it is
desirable that theory driven cue identification is supplemented by a
bottom-up procedure: i.e., asking students to report on their own
cues, because what works for the average student may not work for
all students. I speculate that the latter procedure will reveal that
many environmental cues, such as feedback, trigger positive and
negative emotions that interfere with the students’ choice of stra-
tegies. Evidence from cognitive psychology and neuroscience
shows that environmental cues may trigger goals outside of
awareness, which then run automatically to attain desired out-
comes (Custers & Aarts, 2010). These findings bring up the ques-
tion: Do goals that are primed by environmental cues compete for
processing resources with goals that are intentionally pursued?

6. Some final thoughts

In conclusion, I express my thanks to the editors of this Special
Issue for bringing together researchers from 2 related domains of
research and for giving me the chance to write this commentary. |
also thank the different research teams for a stimulating set of pa-
pers. Reading these papers allowed me to tie some loose ends in my
understanding of why students do or do not self-regulate their
learning. Although much remains to be accomplished in this
important area of research, the different contributors showcased
excellent research that illustrates the complexity of CL as a construct.
This is reflected in the absence of a clear conceptualization and in the
divergent ways that it is measured across the papers. It is important
that researchers agree on the meaning and measurement of CL and
on how it is related to SRL. Explanatory models need to be devel-
oped, detailing the psychological processes underlying students’
understanding and coping with cognitive load. These models must
also account for the fact that in most modern classrooms students
learn together, be it in dyads or in groups, and that the resulting
interaction patterns between students may alleviate or aggravate CL.
Together, the manuscripts provided new perspectives that can
advance the studies of CL and SR, and more importantly, on the type
of bridge(s) that could connect CL research to self-regulated learning.
I hope that my comments and suggestions are useful to support this
important mission.
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